Optimization of Regularization Parameter for GRAPPA Reconstruction

نویسندگان

  • P. Qu
  • J. Yuan
  • B. Wu
  • G. X. Shen
چکیده

The effectiveness of regularization to improve SNR in parallel imaging techniques has been reported in previous works [1-2], but how to optimize the regularization parameter remains a problem. The regularization parameter controls the degree of regularization and thereby determines the compromise between SNR and artifacts. Over-regularization causes high level of artifact, while under-regularization can not prevent noise amplification. In this study, three regularization parameter choice strategies are compared in GRAPPA reconstruction: the L-curve method, the fixed singular value (SV) threshold method, and a novel discrepancy principle approach. In vivo experiment results show that the discrepancy-based parameter choice strategy significantly outperforms the others. It can automatically choose nearly optimal parameters for the reconstructions so as to achieve good compromise between SNR and artifacts. Method

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonlinear GRAPPA Method for Improving SNR

INTRODUCTION GRAPPA [1] reconstructs the missing k-space data by a linear combination of the acquired data using a set of weights obtained through calibrations. Several methods have been proposed in recent years to improve GRAPPA using localized coil calibration and variable density sampling [2], multicolumn multiline interpolation [3], regularization [4,5], reweighted least square [6], high-pa...

متن کامل

Prior-regularized GRAPPA Reconstruction

F-H. Lin Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States Introduction An auto-calibration scan (ACS) can help to improve the reconstructions in k-space based parallel MRI, such as GRAPPA [1]. Usually ACS is acquired at the center of k-space for higher SNR, thus constituting of full-FOV low-resolution prior images in the channels of an RF co...

متن کامل

TV Regularization for High-Pass GRAPPA with Higher Net Acceleration Factor

Introduction In this work, a novel method using calculated calibration signal is introduced to improve high-pass GRAPPA (hp-GRAPPA) [1] when only limited auto-calibration signal (ACS) lines are acquired. Hp-GRAPPA suppresses the central calibration signal to reduce image support. When the number of ACS lines is limited, this suppression will result in insufficient calibration signal which cause...

متن کامل

A Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method

A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005